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Abstract—Energy saving has become a crucial concern in
datacenters as several reports predict that the anticipated energy
costs over a three year period will exceed hardware acquisition.
In particular, saving energy for storage is of major importance
as storage devices (and cooling them off) may contribute over 25
percent of the total energy consumed in a datacenter. Recent work
introduced the concept of energy proportionality and argued
that it is a more relevant metric than just energy saving as
it takes into account the tradeoff between energy consumption
and performance. In this paper, we present a novel approach,
called FREP (Fractional Replication for Energy Proportionality),
for energy management in large datacenters. FREP includes a
replication strategy and basic functions to enable flexible energy
management. Specifically, our method provides performance
guarantees by adaptively controlling the power states of a
group of disks based on observed and predicted workloads. Our
experiments, using a set of real and synthetic traces, show that
FREP dramatically reduces energy requirements with a minimal
response time penalty.

I. INTRODUCTION

Power savings in datacenters has recently gained a lot
of interest because of the costs involved in power delivery
and system cooling. In a recent report to congress [1], EPA
stated that many datacenters have already reached their power
capacity limit and more than 10% of datacenters will be out
of power capacity by the end of this year, while 68% expect
to be at their limit within the next three years. In addition,
another recent report [2] revealed that power occupies nearly
a quarter of monthly operational costs in a datacenter, and if
we consider power-related costs such as power distribution and
cooling additionally, it makes up over 40% of the operational
costs.

Among the many components in the datacenter, storage is
the next largest consumer of energy after servers and cooling
systems. It is currently estimated that disk storage systems
consume about 25-35 percent of the total power [3]. This
percentage of power consumption by disk storage systems
will only continue to increase, as data intensive applications
demand fast and reliable access to on-line data resources. This
in turn requires the deployment of power hungry faster (high
RPM) and larger capacity disks.

Several energy saving techniques for disk-based storage
systems have been introduced in the literature [4], [5], [6], [7],
[8]. Most of these techniques use the idea of spinning down the
disks from their usual high energy consumption mode into a
lower energy mode (sleep/standby mode) after they experience

a period of inactivity whose length exceeds a certain threshold
(idleness threshold). The reason for this is that typical disks
consume about one tenth of the power in standby mode as
compared with their power consumption when spinning.

There are several challenges associated with these spin-
down techniques when applied to individual disks:

o Energy and response time penalty: Disks can only service
requests while they are spinning, in case a request arrives
when the disk is in sleep mode there is a response time
penalty (typically 10-15 seconds) before the request can
be serviced. In addition, considerable amount of energy is
required to spin up the disk, in some cases this can exceed
the energy saved by transitioning the disk to standby
mode.

o Expected length of inactivity periods: Under many typical
workloads found in scientific and other applications,
individual disks do not experience long enough periods
of inactivity (longer than the idleness threshold) thus
limiting the opportunities to save energy.

Achieving energy proportionality in datacenters, rather than
just energy saving, has been recently getting attention from
industry and researchers and proposed as an important design
metric [13]. The core principal behind energy proportionality
is that computing equipment (storage, servers, networks, etc.)
should consume power in proportion to their load level, i.e.,
a computing component that consumes x watts at full load,
should consume z - 755 when running at p-% load.

The energy management approach we consider in this paper
promotes energy proportionality and is different from existing
approaches, as it is based on handling energy management in
a group of disks rather than controlling disks individually. We
show that our energy management is scalable to large datacen-
ters with thousands of disks and preserves important features
of the storage system such as parallelism and fault tolerance.
As explained later, our approach exploits data replication
which is used in many datacenters for reasons such as fault
tolerance and load balancing. Popular distributed file systems,
such as HDFS (Hadoop Distributed File System) [9] and GFS
(Google File System) [10], also automatically replicate data
by default. Data replication can help saving energy because
when a data item is replicated several times, there is often an
opportunity to select a replica found on a currently spinning
disk, thus avoiding the costs (spin-up energy) involved in
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Fig. 1. Energy management (EM) models: Basic EM with mirroring works
like “binary”, either 100% disks running or 50% disks running. Gradual EM
with mirroring can spin down disks individually, hence “gradual”. However,
the upper limit of energy saving is constrained to 50% even at extremely low
load. EM with fractional replication (our approach) provides more flexible
energy management, and the maximum energy saving can be selected by
configuration.

accessing a replica found on a disk which is currently in sleep
mode.

Although replication requires additional storage space, it
is a relatively cheap resource as it is reported that storage
resources in datacenters are often considerably under-utilized
and use only a small fraction of the total available capacity
(Iess than 25% according to several studies) [3], [11], [12]. In
this paper, we present a novel replication strategy that achieves
energy benefits while maintaining performance and fault tol-
erance. In particular, our fractional replication presented in
Section III enables flexible gradual energy management based
on workloads which promotes energy proportionality.

Figure 1 illustrates energy management (EM) models based
on mirroring and our replication technique. With mirroring,
disk contents are copied from one disk to another. Thus,
mirroring can spin down up to half of total disks. As shown
in Figure 1, typical mirroring can achieve up to 50% energy
saving under certain conditions. eRAID [12] is an example of
this. Disk mirroring with gradual EM model is more flexible
by controlling disks individually. The work by Lang et al. [11]
is based on this EM model. The EM model is more flexible
as it controls disks individually, but it is still limited to a
maximum of 50% energy saving. Naturally, replicating with
a greater replication factor (e.g., 3) enables further energy
saving (e.g., 67%), but such techniques are still rigid, lacking
gradual adaptation to workloads. Our replication model is
more flexible, and the maximum energy saving can be selected
by configuration. We discuss this in more detail in Section III.

Another important challenge is to determine when to tran-
sition the disks to lower or higher power states. One typical
approach for this is to use a set of thresholds for a load metric.
For example, Lang et al. [11] use CPU utilization as their load
metric, and assume that disk power states are changed at some
threshold points of the load metric. Similarly, PARAID [5]
monitors disk utilization and spin disks up/down based on
some thresholds. In addition, workload characteristics can be
significantly different among datacenters due to the type of

applications they run, and also can change over time in the
same datacenter.

In this paper, we present a systematical approach for
energy management. Our solution, called FREP (Fractional
Replication for Energy Proportionality), considers the disks
in each disk array as a single unit which can be spun down
or up. We refer to spinning up and down of such units as
“gear-shift”. As we will discuss, our gear-shift mechanism
incorporates both predictive and reactive mechanisms, rather
than relying on static thresholds. To improve performance,
we maintain load balancing among the disk arrays that are
currently spinning by access request re-direction. For down-
shifts (for energy saving), we make predictions based on past
historical information. For up-shifts (for performance guaran-
tees), we utilize reactive information in order to respond to any
performance degradation quickly. As a basis for these, FREP
provides a replication strategy (and its associated functions).
We believe that FREP is an important tool for achieving energy
proportionality in the storage system.

Our main contributions in this paper are summarized as
follows:

e« We present basic functions and strategies for FREP
energy management, including replication strategy, load
distribution, and update consistency.

o We present a prediction model based on past historical
observations with a de Bruijn graph to enable probabilis-
tic decisions. In addition, we present our constraint-based
gear-shift mechanism, by which FREP can shift gears for
energy management.

o We provide extensive evaluation results with a diverse
set of traces, including two Cello99 traces [14] 6-month
apart each other, two OLTP traces [15], and synthetic
traces with different workload characteristics.

¢ We also show that our gear-shift mechanism can be used
to enhance PARAID-type systems in terms of energy
management with performance guarantees.

This paper is organized as follows. In Section II we present
some related studies that use replication for energy savings. In
Section III, we introduce the FREP replication strategy, and
a series of functions for I/O service and energy management
in such a replicated environment. Our prediction model with
de Bruijn graphs is introduced in Section IV, where FREP
gear-shift mechanism based on the prediction model is also
described. Our extensive experimental results with diverse
workload sets are presented in Section V. Finally, summary
and conclusions are presented in Section VL.

II. RELATED WORK

Our work is inspired by Power-aware RAID (PARAID) [5]
which was the first work to introduce the concept of gear-
shifting based on system load. It provides a replication strat-
egy, called skewed striping, for disk energy management with-
out service disruption. The main difference is that, PARAID
shifts gears within a RAID unit by spinning up/down one
or more disks in the array, while we do it across multiple
RAID arrays. Another difference is the conditions leading to



a gear-shift. PARAID takes a reactive approach based on disk
utilization with thresholds. Our gear-shift mechanism uses a
prediction technique based on past history in addition to a
reactive technique.

Lang et al. [11] used mirroring for disk energy management.
Traditionally, mirroring gives two options — running all the
disks (100%) or half of disks (50%). The authors present
gradual disk power control combined with load balancing
techniques by using a new replication strategy, called chained
declustering. Although this new technique provides more flex-
ibility, energy saving is still limited to 50%, since at most 50%
of disks can be spun down. However in real systems the degree
of load variation can be more dramatic. For example, in [16],
the authors observed a high degree of load variation, over a
factor of three in a commercial web site. Since datacenters
usually tend to over provision resources to satisfy peak loads,
there may be many opportunities to save energy by factors
much greater than 50%.

Although energy management is a crucial problem for data-
centers, performance guarantees may be even more important.
Hence, energy management needs to be performed within
acceptable performance bounds. As pointed out in [17], simple
dynamic energy management techniques, such as timeout-
based disk spin-down, need to pay significant performance
penalty. This makes administrators of datacenters reluctant
to employ such approaches in these cases where system
performance is a crucial requirement. To provide energy saving
within a controlled performance environment, several research
works have taken system SLAs into account. Hibernator [7]
employs response time constraint, and considers an optimiza-
tion problem to minimize energy subject to a given constraint.
Similarly, eRAID [12] uses a response time constraint in addi-
tion to a system throughput constraint for their energy saving
problem. However, we observed that average response times
can experience a very high degree of variance, sometimes
exceeding three orders of magnitude. Elnozahy et al. [18]
employ a “percentile-based response time” to specify the
performance constraint for Web servers. In this work, we also
employ this to define system SLAs.

Both static and dynamic techniques have been studied for
workload-adaptive energy management. A well known static
technique, which we call 2-competitive algorithm [4], is based
on transitioning the disk to sleep mode whenever it experiences
a period of inactivity greater than PﬁT where (5 is the energy
penalty (in Joules) for having to serve a request while the
disk is in sleep mode (i.e., spinning the disk down and then
spinning it up in order to serve a request) and P; is the rate of
energy consumption of the disk (in Watts) when spinning. This
technique does not attempt to predict the workload and may
sometimes lead to unstable performance. Dynamic techniques
include employing a multiple set of “experts” [19], [20].
In [19], a set of timeout values are combined to determine the
next idleness timeout based on associated weights varied over
time, based on the past history. In [20], rather than using an ag-
gregated result, one expert is chosen for energy management,
whenever needed, based on the weight values. In updating

weight values, this work considered both energy saving and
response time latencies. Chung et al. [21] established Markov
chains for dynamic energy management, and calculated state
transition probabilities based on observations for nonstationary
workloads. Energy management actions are determined based
on the probabilities. Our prediction model also refers to past
observations for workload adaptability.

III. SYSTEM MODEL

We introduce our system model and our energy manage-
ment solution called FREP (Fractional Replication for Energy
Proportionality). We are particularly interested in read-many,
write-rare environments, as many datacenters use write off-
loading [22] or Log Structured Files techniques [23] to batch
together write transactions and minimize their effect on power
consumption.

FREP manages power states on the basis of a group of disks
(e.g., a RAID array). In other words, a group of disks (which
form a RAID array) are transitioned together to either standby
or active state in the course of energy management. We assume
that the entire disks in a group are either in a standby state
(non-spinning), or they are all spinning in the active state.'

Formally, we define node as an array of disks managed
together with respect to energy management. Thus, a node is a
collection of disks and there is no disk sharing between nodes.
For example, a node can be a RAID-5 array that includes data
and parity disks. For scalability, a large storage system can be
divided into multiple disjoint partitions, each of which consists
of its own set of participating nodes. In the rest of this paper,
all functions for energy management and analysis refer to a
single partition. A partition of a storage system consists of a
set of nodes N = {N;}. We distinguish between two classes
of nodes: Covering Set (CS) nodes that are always spinning
and contain between them a copy of each data item in the
partition, and non-CS nodes that can change their power states
for energy management purposes. For ease of exposition, we
assume 7 nodes in total, where the first m (1 < m < n) nodes
with the lowest indexes are CS nodes, i.e., {N1, No, .., N;» },
and the rest are non-CS nodes, i.e., {Npt1, Nmta, -, Npt
Table I summarizes notations used in this paper.

Figure 2 illustrates our gear-shift model, from the lowest
gear level to the highest gear level. In the figure, filled nodes
are active, whereas non-filled nodes are standby. In the lowest
gear level, only CS nodes are active (disks associated with
CS nodes are spinning) while at the highest gear level all the
nodes are active. As explained later, for any node in standby
mode, all requests to its data are redirected and serviced (in a
balanced fashion) by other active nodes that hold an associated
replica. Our replication enables continuous service regardless
of energy management with minimal storage requirement, as
discussed in the next section.

Figure 3 shows an example of a storage system with
multiple partitions with different configurations. As shown

'We interchangeably use “standby/active”, “spun-down/spun-up”, and
“powered-off/powered-on” for disk array state.



TABLE I
NOTATION

[ Symbol | Description

N; A node with index 7 (N; € N)
D; Original data for V;
D;(%) | a/b fraction of D;
Vi Storage volume of N;
Wi Replica storage for INV;
n Total number of nodes (= |N|)
m Number of CS nodes
n —m | Number of non-CS nodes
w Number of active nodes
n—w Number of standby nodes
C Storage capacity
p Storage utilization
L;(w) | Load for node ¢ with w active nodes
LIF Load imbalance factor; LIF' = 0 means balanced load
R(p) p-% response time in ascending order in a time frame

CS Nodes Non-CS Nodes

NJ Nm Nm+1 Nm+2 Nn
Highest
TR
Lowest
............ i

Fig. 2.  FREP gear shift model: Gear-shift takes place based on the given
performance constraint. In the highest gear level, entire nodes are active,
whereas only a small number of nodes (CS nodes) are active in the lowest
gear level. The number of CS nodes is configurable. Filled nodes are active
and empty nodes are standby in this figure.

in the figure, each partition can be configured with different
number of CS and non-CS nodes. As mentioned, our energy
management functions are effective within a partition.

A. Replication strategy

We present our replication strategy that enhances energy
proportionality. The main idea behind FREP is to utilize data
replication in order to avoid performance penalties. We will
show that our replication scheme can achieve continuous data
availability even in energy saving mode. On the other hand,
energy management without replication usually causes severe
latencies because of the need to spin up disks from standby
node, an operation that can take tens of seconds to get back
to service (hence unacceptable to datacenters in general).
For example, as shown in the evaluation section, a simple
energy management technique based on the 2-competitive al-
gorithm [4] mentioned earlier, may sometimes incur response
time penalty causing performance degradation by a factor of
10.

Next we outline the general structure of our replication

auslansfanlin .

Non-CS Node

Fig. 3. FREP partitions
CS nodes non-CS nodes
Node N1 N2 N3 N4 N5 NG
Orlg D1 D2 D3 D4 D5 D(;
Repl. Dg(%) Dg(%)
D4(?) D4(?) D4(%)
Ds(f) Ds(1) | Ds(f)  Ds(3)
De(3)  Ds(3) D6(§) D6(§) DG(%)
Di(T) Dih) Di(h) Di(3)
Dy(3) Da2(3) Da(3) Do(3)

Fig. 4. FREP replication scheme with six nodes

scheme. We assume that before replication is introduced each
node N; has some original data denoted by D;. We denote
by, D;(%) an a/b fraction of D;. After replication each node
will hold some replicated data in addition to its original data
as follows: (a) Each CS node gets an equal fraction of the
replicated data from each non-CS node; (b) For fault tolerance
and load balancing purposes, non-CS nodes maintain replicas
of original data associated with CS nodes. Again, each non-CS
node gets an equal fraction of the replicated data from each
CS node; (c) Non-CS nodes keep replicas of original data
(D;’s) from specific other non-CS nodes in a skewed way as
explained later. We call cases (a) and (b) balanced-replication
and (c) skewed-replication.

Figure 4 illustrates an example of our replication scheme
with 6 nodes (in a partition), two of which are CS nodes. Since
there are two CS nodes in this setting, they each keep a disjoint
half of non-CS node data. Non-CS nodes also maintain disjoint
replicas of CS node data. As there are four such nodes each
gets a disjoint one quarter of the data. This replication is done
strictly for fault tolerance and performance as will be discussed
in Section III-F. In addition, non-CS nodes maintain a part of
other non-CS node replicas based on the gear-shift principle.
The replication between non-CS nodes helps to distribute the
request load in energy saving mode (i.e., a non-highest gear
level).

We next explain the skewed-replication, the replication
scheme used between non-CS nodes. The original data D, of
a non-CS node N; (¢ > m+ 1) are replicated equally to other
non-CS nodes with lower indexes, i.e., V; for m+1 < j <,
in a random and disjoint fashion. This is done as follows. For
each j for (m + 1 < j < i), we randomly select % of
the blocks of D; (original data of non-CS node N;) without



replacement, and copy them to node Nj.

B. Storage requirements

Now, let us discuss the storage requirement for replicas for
each node (W;). Let V; be the size in bytes of D, i.e., the
data volume of N;. The following equation shows the storage
requirement for replicated data on each node.

D hmma1 Ve/m if1<i<m
Wi=<S S Vi/(n—m) ifi=n; (1)
Wit1 +Viga /i otherwise.

In the equation, the first case is for CS nodes, and the second
case is for the last non-CS node N,,. These nodes only hold
replication data resulting from balanced-replications. The third
case is a recursive expression for the storage requirements
resulting from the skewed-replication for non-CS nodes de-
scribed above (except for non-CS node N,,).

We next discuss the total storage requirement for FREP.
For simplicity, from now on, we assume that each node holds
the same volume of original data, ie., VN, V; = V, so
that the total storage for original data is nV. Clearly storage
requirements are at least 2nV as each item is replicated at least
once, the next proposition shows that it is less than 3nV.

Proposition 3.1: The total storage requirement V) for FREP
is Wa3nV —mV(1+In)

Proof: Since CS nodes maintain a whole replica for non-
CS nodes and non-CS nodes also maintain a whole copy for
CS nodes, W = 2nV + a, where « is the storage require-
ment for skewed-replication (i.e., replication between non-CS
nodes). For each non-CS node N, the storage requirement
for its replica is 157117“) V, for © > m + 1, and hence, the
additional storage « is,

z”: kk(erl v Vzk m

a =
k=m+1
n—1 n—1 1
=V Z 1—m Z z 2)
k=m k=m

. —1 oy s .
For a harmonic number H,,_; = Z:l % it is approximate
to H, 1 ~ Inn + ~, where ~ is Euler’s constant. Hence,
n—1 1 _ n—1 1 m—11 __ ~
k=m &k — k=1% k=1 & — anl - Hmfl ~ lnn—l—
—In>™
—(Inm+v)=In2

o

V[n—m—mln%}

= V|p-m+m ) (3)

m
Therefore, the maximum storage requirement VYV is:

W= 2nV+a%3anmV(1+ln%) @)

|

Now, let us consider possible CS/non-CS node configura-

tions from the storage perspective. For simplicity, we assume
that all disks in a partition have an equal disk capacity C.

Proposition 3.2: The number of CS nodes m is bounded

by: pn < m < m*, where p is storage utilization and m™ is the

20
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«
Mpyin=P*N Mmax=M

0 20 40 60 80 100
Number of CS nodes

Fig. 5. Constraints of number of CS nodes: Based on the constraints pn <
m < m™* (Proposition 3.2), it is possible to compute the min/max number
of CS nodes for any configuration. In this configuration with n = 100 and
p = 0.2, the min/max number of CS nodes are 20 and 79, respectively.

()

Proof: We first derive the minimum number of CS nodes
(Mmin). Any CS node needs to keep (i) its own copy, and (ii)
replicas for non-CS node. By assumption, (i) = pC, and (ii) =
pC' - = This cannot not exceed the capacity C'. Therefore,

pCln—m) _

pn<m 5

pC +

m

To obtain the maximum number of CS nodes (Myaz),
we can conversely consider the minimum number of non-
CS nodes (0,;,) that are required for replication. Then,
Mmaz = N — Omin. Among non-CS nodes, NV,,,1 requires
maintaining the largest space for replication, and hence, 0,
depends on the space availability of N,,;1. IV,,41 maintains
(1) its own copy, (ii) CS node replicas, and (iii) non-CS nodes
replicas We can simply compute that (i) = pC and (ii)
pc(ﬁ_k"'—i_nil) PC S it b =
Hn 1— m ~ pC In m

Since the summation of (1)+(ii)+(iii) should be less than C,
we obtain:

pC+pC-m+pC-1n("> <
n—m m—+1

m n 1
1 < - 6
m+n(m+1)_p ©

Q

1+

n —

We define m* as the maximum m that satisfies Equation 6.
Combining it with Equation 5, finally,

m<m<m* @)

|
Figure 5 shows an example for possible min/max number
of CS nodes for a system with n = 100 and p = 0.2. In the
figure, the minimum required number of CS nodes is 20 and
the maximum is 79. In other words, the number of CS nodes
cannot be smaller than 20 or greater than 79 to successfully
accommodate the FREP replication. From the perspective
of energy management, the maximum energy saving can be
obtained up to 80% (1— 100) with the minimal CS node setting
in this example.



CS nodes non-CS nodes
w N1 Nz N3 N4 N5 N@
6 1 1 1 1 1 1
5 1.2 1.2 1.2 1.2 12 —
4 1.55(1.5) 155(.5) | 14515 14515 — —
3 2.11 (2) 2.11 (2) 1.78 (2) — —  —
2 3 3 — — —_ —
Fig. 6. Example of load distribution: This example shows load before and

after (in parenthesis) optimization, as a function of the number of active nodes
(w). With a lower gear, CS nodes have greater load than non-CS active nodes.
This can be mitigated by our optimization with probabilistic redirection.

C. Load distribution

We next discuss the impact of energy management on load
balancing and how we distribute the load to active nodes by
taking advantage of the replication. In FREP, active nodes
take up load from standby nodes, based on the location of
replicas (the details on implementation of request redirection
for standby nodes are described in Section III-E). For example,
in Figure 4, nodes N1—Nj5 service requests for Ng when Ng
is in standby, since they have Ng replicas. Similarly, when
N5 transitions to standby, N1—-N, take up N5 load evenly.
Figure 6 shows an example of load distribution as a function
of the number of active nodes (w). For simplicity, we assume
that the load generated by accessing the original data in each
node is uniform and normalize it to 1 (i.e., load=1). Note that
numbers in parentheses in the figure represent the adjusted
load achieved by our optimization algorithm to mitigate load
imbalance between CS and non-CS nodes. We will discuss it
later in this section.

Next we show how to compute the load for each node based
on the number of active nodes. Let L;(w) be the load for node
i where the number of active nodes is w (m < w < n). By
definition, L;(w = n) = 1 and ), L;(w) = n. We can then
compute load as follows:

0 if i > w;
Liyi(w)+1/w ifm<i<w; (8)
14 Zkzwe 1751

Li (w) =

otherwise.

In Equation 8, the first case is for standby nodes, and thus
the load is necessarily zero. The second case is for active
non-CS nodes, and can be defined recursively with the newly
introduced load at every node spin-down (1/w). Alternatively,
it can be defined (non-recursively) as L;(w) = >, _ 11 77
The last case is for CS nodes. Since each active non-CS node
takes > ), 4 7+ load from standby nodes, the rest of the
load on standby nodes which is equal to Y7 ., (1 — %=")
should be handled by CS nodes. Therefore, each CS node takes
W in addition to its own load (i.e., 1).

In Figure 6, we see some degree of load imbalance between
CS and non-CS nodes, as non-CS nodes transition standby.
This is the inherent characteristic of our load distribution
algorithm. More accurately, we define a metric load imbalance
factor (LIF) to express how the load deviates from the ideal
balanced state: LIF = given_load — balanced_load. Thus,

1

Basic (wit‘houl oplir‘nization) '
Optimized

08 |
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04 |
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LIF (Load Imbalance Factor)

ol
20
(m)

. . . . . : _
30 40 50 60 70 80 90 100
Number of active nodes (w) ™)

Fig. 7. Load imbalance factor (LI F’) for CS node (LIF = given_load —
balanced_load): With the optimization, LIF is significantly reduced.

LIF > 0 means over-loaded, while LIF < 0 means under-
loaded and LIF = 0 indicates perfect load balance. LIF;(w)
represents LI F' for node ¢ where the number of active nodes is
w. Hence, LIF can be expressed as LI F;(w) = L;(w)—n/w,
since n/w is the ideal balanced load. Figure 7 shows LIF for
CS nodes varying with the number of active nodes in a system
with n = 100 and m = 20. We can see that load is balanced
for the two extremes, i.e., w = m or w = n. In between these
extremes, we see some degree of load imbalance in the figure.
We now present an optimization technique to reduce LIF
for CS nodes, thus bringing the system closer to a balanced
state. The basic idea is to have non-CS nodes service CS node
load based on replicated data they maintain. To achieve this,
it is possible to redirect requests accessing CS node data to
any active non-CS nodes probabilistically if the corresponding
replicas are kept in such active non-CS nodes. In our optimiza-
tion, we compute the redirection probability (6) as follows:

6 = min (1,Z’f—1LIF’“(w) x ”_m) )

m w—m

In the equation, W
each CS node has the same LIF.

The intuition behind this is to redirect requests for any CS
node data more aggressively if either the LIF for CS node
is greater or the number of active non-CS nodes are smaller
(or both). For any request accessing CS node data, we can
probabilistically redirect the request based on the computed 6
but only if any of active non-CS nodes keeps the replica. For
example, suppose § = 0.5 and active non-CS nodes keep 1/2
of CS node replicas. In that case, 50% requests to CS node
data can be redirected to non-CS nodes (probabilistically), but
50% of them can actually be serviced by active non-CS nodes.
Consequently, it can reduce CS node load by 0.25. Figure 7
shows LIF for CS nodes with and without the optimization
in a system with n = 100 and m = 20. We can see that
our optimization can significantly mitigate load imbalance
compared to the basic one. Except for states with fairly small
number of active non-CS nodes (less than 50 in the graph),
load is almost balanced for active nodes.

is simply LIF;(w), since

D. Update consistency

Although our focus is more on read-dominant environments,
FREP provides write functionality for new writes and update



consistency. The main principle for writes is that we redirect
all write requests to CS node first, and perform synchroniza-
tion in the reorganization phase later. Hence, the basic idea
is similar to write off-loading [22], in which all writes to
powered-off disks are temporarily redirected to a cache area
for future synchronization.

In FREP, however, there is no assumption about extra cache.
Instead, FREP redirects all writes to CS nodes regardless of
power state of non-CS nodes. Recall that, by our replication
strategy, any non-CS node data block is also maintained in
CS node. For any update request, the CS node data/replica is
updated, and the original block is simply marked as stale if
it is in any non-CS node to prevent subsequent accesses. For
new writes, one of CS nodes is selected to accommodate it.
Note that these write redirections are only applied while the
system is functioning in energy management mode. Otherwise,
the original data is directly updated, and newly written blocks
are disseminated (based on system policy).

Whenever the gear goes up to the highest level, a back-
ground reorganization process is scheduled. That is, any sub-
sequent down-shift condition enables reorganization to be ex-
ecuted. During the reorganization, down-shift is postponed. In
this phase, all stale blocks in non-CS nodes are synchronized
with the corresponding copies of CS node. Newly written
blocks in CS nodes can also be migrated to non-CS nodes
based on system policy, and replication takes place with using
skewed-replication scheme, as discussed in Section III-A. In
contrast, non-migrated blocks (by system policy) are replicated
to non-CS nodes (balanced-replication). The gear is then
shifted down after completing reorganization if the down-shift
condition is still effective. In the course of reorganization, any
condition to shift up gears can interrupt this process, and the
system devotes to user requests.

E. Request redirection

In this section, we describe data structure for meta infor-
mation and the detailed algorithm for request redirection for
both reads and writes. Since we discussed request redirection
for load distribution and write procedures in the above two
sections, we focus here on explaining general operations.

To enable request redirection, FREP maintains a mapping
table, as shown in Figure 8. When a request arrives and the
original data block is located in a standby node, FREP first
refers to the mapping table. For each data block, the associated
mapping table entry contains replica addresses in a non-CS
node (NRA) and a CS node (CRA), in addition to a flag indi-
cating update history (stale or new creation). The associated
non-CS node address can be null, but CS node address should
not be null. If NRA is not null and the node is active, the
request is redirected to the NRA. Otherwise, the request is
redirected based on CRA. Note that the mapping table only is
for skewed-replication. For balanced-replication, there is no
block-level meta information; instead, each node maintains
<node#, start_block_offset, number_of_blocks>, and replica
block address is calculated based on the information. This
reduces storage requirement for meta information.

Mapping Table

AflOriginal Block Address) —»
(OBA) Non-CS Replica Address
Nm+1 (NRA)
C5 Replica Address
(CRA)
4. 4 Flag
Address ::=<Node#, Block#>
N,

Fig. 8.  FREP mapping table: The mapping table contains two replica
addresses, one for non-CS node and the other for CS node, and a flag to
tell staleness or new write for each data block for non-CS nodes. It is then
used for redirection of requests.

Input: Request r
1 switch r.type do
case new writes:
Get free blocks from one of CS nodes;
Write the block to the address;
Create a mapping entry with flag = CREATE;
endsw
case update:
Entry e = MappingTable.get(r.address);
Write block to e. CRA;
e.flag= STALFE,
endsw
case read:
Entry e = MappingTable.get(r.address);
if e.flag == STALE then
| Read block from e.CRA;
end
else if OBA.node is active then
| Read block from e.OBA;
end
else if NRA is not null then
| Read block from e.NRA;
end
else
| Read block from e.CRA;
end
endsw
27 endsw
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Algorithm 1: Request service

Algorithm 1 illustrates how the request is serviced in the
system. If the request is for a new write, FREP allocates a
block from one of CS node, and a new entry is created in
the mapping table. The request for update is redirected to the
associated CRA, and then the flag is set to stale. In the case
of read, the stale bit is checked first. If the block is stale,
the request is handled by the CRA. Otherwise, the request is
handled by the priority OBA > NRA > CRA, as shown in
the algorithm.

We consider the stripe size for the block size in the mapping
table. If the system is configured with 146 GB disks, 128
KB for stripe size, and 24 nodes (this is our experimental
configuration with 120 disks in Section V), the required



amount of storage is less than 230 MB for the mapping
table.> Since server clusters is typically configured with large
memory (as large as tens of GBs), the mapping table can be
accommodated in the main memory.

FE. Fault tolerance

Our main consideration in this paper is energy management,
and changing disk power states we discussed are based on
the system operating normally in non-failure mode. However,
failure can happen for any components, and we need to
handle them. In this section, we only consider the fail-stop
model assuming failure events are detected immediately as
they occur.

Our principle for fault tolerance is to immediately stop
energy management functions. This means that standby nodes,
if any, are spun up immediately, and all nodes other than the
failed node start servicing access requests. If the failed node
is a non-CS node, all requests to that node are redirected to
CS nodes. In the case of CS node failure, non-CS nodes take
over all requests to the CS node, since non-CS nodes maintain
CS node replicas (as seen in Figure 4). In that case, load for
non-CS nodes is 1+ ﬁ, while active CS node have 1. In
Algorithm 1, we omitted the procedure for request distribution
under a failure environment for simplicity, but it can be easily
considered.

This strategy allows us to configure a system even with
a single CS node, if needed. However, in this case, there
is no designated node to accommodate new write blocks.
In such configuration, thus, we can simply have the non-CS
node with the greatest identifier (i.e., /V,,) accommodate them,
since it has no duty of keeping any replicas (thus, there is
a high possibility of available space). After recovering from
failure, synchronization is performed as in the reorganization
phase. In some cases, one additional task in this phase is the
synchronization from non-CS nodes to the recovered CS node.
In the next section, we discuss how FREP determines gear-
shift conditions.

IV. GEAR-SHIFT MECHANISM

FREP shifts gears for energy management, and as a result,
its energy benefits and response time performance critically
rely on the gear-switch mechanism. In this section, we present
our gear-switch mechanism.

A. Service constraint

Our main goal in designing gear-switching mechanism is
to maximize energy benefits, such that the system SLA is
met. There are various SLA metrics in the literature. Average
response time is one typical example [7], [12]. However, in
real life trace logs we observed a high degree of variation for
this metric (Cello99). As shown in Figure 9, variation of over
3 orders of magnitude is possible. The figure plots average
response time observed with different window sizes from 1

2We compute this with 8-byte mapping entry size: NRA(31 bits), CRA
(31 bits), flag (2 bit), and node# (7 bits) and Block# (24 bits) in the address
format.
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Fig. 9. Variation of Average Response Time (Cello99): Average response
time is highly varied over 3 orders of magnitude. Note that the y-axis is in
log scale.

minute to 1 hour. Even with a large time window, we can
still see drastic changes across time. Such a high degree of
variation makes it difficult to use this metric in defining system
SLAs For this reason, we alternatively consider percentile for
system SLAs.

Percentile is widely employed in definitions of system
SLAs. For example, availability requirement (for data, node,
etc) is often defined with x-nines, where z-nines refers to
the number of ‘9’ in percentile value. Thus, 5-nines refers
to 99.999% availability. In this paper, we use percentile of
request response time for the system SLA. For instance, we
can specify a service constraint: “99% of requests should
be serviced within 500 msec.” This is a safer metric than
average response time, particularly for such environments with
a high degree of variations, in which only smaller number of
delayed completions can critically affect the aggregated result.
Formally, a system SLA is defined:

SLA:R(p) <t (10)

Here, p is a percentile, R(p) is p-% response time in
ascending order (observed in a given time interval), and 7 is
the response time constraint. Thus, we need to provide values
for p and 7 to specify an SLA. With the specified SLA, FREP
checks whether p-% requests lie within 7. For this, FREP uses
a predictive approach, and makes gear-shift decisions based on
prediction. Before discussing our prediction model, we first
discuss workload diversity with real and synthetic traces, and
then continue to discuss our prediction model based on de
Bruijn graphs.

B. Sensitivity to Workload Characteristics

Workload characteristics can be widely different for systems
or even in a single system over time. Figure 10 compares
request arrival rates from two traces, a Cello99 trace and
an OLTP trace, each of which is from HP Storage Research
Lab [14] and University of Massachusetts [15], respectively.
We call these traces “Cello99” and “umass”. The details of
workload traces used in this paper are described in Section V.
As can be seen in the figure, the traces have fairly distinctive
patterns. The Cello99 trace looks highly bursty going over
to 1,000 requests in a second, while the umass trace is
relatively uniform moving up and down between arrival rate
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Fig. 10. Request arrival rates for real traces (Cello99 and umass): Workloads
can have highly different characteristics. The Cello99 trace shows a fairly
bursty characteristic, while the umass trace shows relatively uniform with
respect to request arrival rate.
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Fig. 11. Disk idle time distribution (Cello99, umass, synthetic): Disk idle time
distributions are different for each trace, suggesting different opportunities for
energy saving.

0 to 200 per second over time. Another recent observation
also reported significant I/O workload differences for server
systems, including mail, web, and file servers [24].

Figure 11 shows disk idle time distributions for the two
traces described above and three new synthetic traces, each of
which has an exponential distribution with p=6ms, u=20ms,
and p=50ms, respectively, for inter-arrival time. The first
two synthetic traces were characterized in Hibernator [7] for
OLTP workload (u=6ms) and Cello99 workload (u=20ms).
We additionally create the third synthetic trace to represent a
relatively light workload. Note that inter-arrival time for our
cello trace is 29 ms, and for the umass trace is 8§ ms. We
assume that the disk is idle if it does not perform any action
over 10 seconds. In addition, Tgg refers to break-even time
for our disk model used in Section V.

In the figure, the Cello99 trace shows a heavy tail, indicating
some devices experienced very long idle times. The umass
trace looks similar to Cello99, but shows a slightly shorter
tail. The synthetic traces show relatively short lengths of idle
times and non-heavy tails compared to the real-world traces,
and provide lesser opportunities for energy savings for the
2-competitive algorithm (which is based on a fixed idleness
threshold). One interesting observation is that the synthetic
trace with u=50ms shows smaller opportunities than the real
traces even with heavier arrival rates. These observations
suggest that in order to get better results, we need energy
savings strategies that consider workload characteristics.

Fig. 12. A de Bruijn graph: With 3 bits, there can be 8 states in the graph.

Variations in workload characteristics indicates that static
techniques should be ruled out. For example, if we simply
apply the 2-competitive algorithm for the synthetic traces
(particulary for the first two synthetic traces), there will be
severe performance and energy penalties. Although the static
parameters can be tuned for each workload, it is usually
difficult to capture workload characteristics a priori. A pre-
dictive approach can be an option for dynamic adaptation to
different workload characteristics. In this paper, we consider
a predictive approach based on probability that is constructed
based on past observations, as discussed next.

C. Prediction with de Bruijn graphs

We use “state-based” predictors to probabilistically predict
future states by using a de Bruijn graph. In a de Bruijn graph
with k bits, there exist 2¥ states represented in binary, each of
which has 2 incoming edges and 2 outgoing edges. For each
state, one of two events can take place , 0 or I, based on how
the current state transitions to the next state along with the
corresponding outgoing edge. With this property, each state
tells us what has happened over k£ time frames. For example,
if the current state is ‘100’°, there was /-event before 2 time
frames, followed by 2 consecutive 0-events. Thus, we can
be aware that the most recent event was O-event. Figure 12
illustrates a 3-bit de Bruijn graph with 8 possible states. In
the figure, the current state is '010°, and the next possible
state is either 100’ or *101” according to the next event.

On a de Bruijn graph, we construct edge probabilities based
on historical information. To achieve this, each node has
two counters, ¢y for the number of 0-events and c; for the
number of /-events. These counters are incremented based on
the corresponding event. Figure 13 shows a snapshot of the
counters for state ‘001’. Based on the counter values, edge
probabilities are computed, as shown in the figure (left-side).

By configuring max number of tickets (MaxTicket), it is
possible to limit the window length we wish to monitor. The
window length should be equivalent to time frame length x
MaxTicket, where time frame length is an observation interval,
in which a single event (zero or one) is generated based on
the observation. If the total number of tickets is smaller than
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Fig. 13.  Counters in a de Bruijn node: In our model, each de Bruijn

node contains two counters for zero counter (co) and one counter (c1). Any
successive event changes the values of the counters, thus changing edge
probabilities accordingly.

MaxTicket, the counters are simply incremented according to
the event. After the total number of tickets reaches MaxTicket,
however, one ticket in a counter is transferred to the other
counter, instead of incrementing the counter. Thus, there will
be no change in the total number of tickets (=MaxTicket) after
this happens. In Figure 13, an 0-event occurs, and we see
that a ticket in c¢; is transferred to ¢y and the probabilities are
recomputed accordingly (in the right-side figure). Note that the
values of the counters are either a zero or a positive integer.

D. Gear-shift algorithm

Now, we present the FREP gear-shift algorithm. For down-
shift, FREP relies on the above prediction model, while it
uses a reactive model for up-shift. We first discuss how FREP
determines down-shift, and then discuss up-shift.

FREP maintains a de Bruijn graph for each partition. To
construct edge probabilities, we assume a 0-event happened
if the measured information meets the service constraint (e.g.,
99% of requests are less than 500 ms) in the time frame (or
epoch). On the other hand, if the percentage of violations is
greater than the given percentile, we assume /-event happened.
That is,

0 if R(p) <
event = .
1 otherwise.

To determine down-shift, we calculate the probability of
consecutive k zeros (i.e., the probability that the service
constraint will be met for the following k time frames) at
every epoch. If the computed probability is greater than a
certain threshold (or confidence), we consider that the down-
shift condition is satisfied, and the node with the highest index
among active non-CS nodes will be sent to the standby mode.
Naturally, no down-shift test is performed at the lowest gear
level.

For clarity, we formally describe this procedure as follows.
Let S; be state ¢ in the graph configured with % bits. Hence,
there are max 2% states, and we assume that i is the state
number; for example Sy indicates state 000, while S; is for
state "111°. Let P; o be the probability of 0-edge at S;, and
similarly P; ; be the probability of /-edge at S;. If we suppose
the current state is S,, the probability for consecutive k-zeros
means the probability of transition from S, to Sy, right after

k time frames. Then, the probability P is defined:

k—1

P = H Pacio

i=0
Here, ‘<’ is the bitwise shift-left operator. With the resulted
probability, we decide the gear level:

Gear — {Gear -1

Gear

(1)

if P > confidence;
otherwise.

We obtain the k value from the break-even time (Tgg).
For the time frame size Ty, we set k = [Tggr/Tw]|. The
intuition behind this is that there is no energy penalty if
the following k consecutive time frames satisfy the service
constraint. However, prediction can sometimes fail. This can
also happen for reasons such as a sudden change in workload
characteristic. In such a case, we give a penalty, and edge
probabilities are recomputed. With a penalty, all 0-counters in
the graph are dropped by half, and the tickets are transferred
to the corresponding /-counters (regardless of the current total
number of tickets). This decreases 0-probabilities, resulting in
more conservative down-shift decisions thereafter. For choos-
ing Tw and confidence values, we explore impact of those
parameters in the evaluation section (see Section V-E).

Making up-shift decisions relies on reactive information. In
our mechanism, FREP immediately up-shifts the gear when-
ever it sees [ consecutive misses against the service constraint,
so as to prevent undesired performance degradation. In this
paper, we used [ = 2 by default to prevent any impulsive
up-shift decision due to a temporal degradation. However,
I may have a certain correlation with time frame size Ty .
Investigation of this would be interesting and planned for
future work. We may consider proactive up-shifts based on
probabilities as well, but we have not seen any advantages for
FREP.

V. EVALUATION

In this section we present an evaluation of FREP in terms
of energy benefits and performance guarantees. We first focus
on energy benefits (with relaxed constraints), and then dis-
cuss performance guarantees (with tight constraints). Before
reporting our results, we describe our experimental setting and
methodology in brief.

A. Experimental Setup

For evaluation, we augmented Disksim [25] which is widely
used for studying storage systems. We considered Seagate
Cheetah 15K.5 enterprise disks.? For this disk model, however,
some power information, such as standby power and spin
up/down power, is missing in the associated documents. For
this reason, we alternatively chose power parameters from Sea-
gate Barracuda specification.* Since the main purpose of our
experiments here is to see applicability of FREP in terms of

3http://www.seagate.com/www/en-us/products/enterprise-hard-
drives/cheetah-15k/
“http://www.seagate.com/support/disc/manuals/sata/10040237 1a.pdf
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Fig. 14. Disk power model (from Seagate Barracuda 7200)

both performance and power, we believe that comparing FREP
with existing techniques with identical power parameters is a
fair comparison. The power model we used in this paper is
shown in Figure 14.

We assumed a datacenter environment with 120 disks.
Although our model has no dependency on any specific
RAID organization, we used RAID-5 structure as a unit of
energy management. That is, a RAID-5 array is a node in
our terminology. Each array has 4 data disks and 1 parity
disk. Thus, there are 24 RAID arrays in the system (i.e., 24
nodes). We divided the system into 4 partitions, each of which
consists of 2 CS nodes and 4 non-CS nodes. However, we also
conducted experiments with different partition configurations
in order to examine configuration effects.

We used multiple trace data, including real and synthetic
traces: 2 Cello99 traces from HP Storage Research Lab [14]:
a 1-day trace on May Ist (labeled “cello-1") and a 3-day trace
between November 15th—17th (labeled “cello-2); 2 financial
traces provided by University of Massachusetts [15], each of
which is labeled “umass-1" and “umass-2”, respectively. The
average inter-arrival time for Cello99 traces is 29.6 ms and
20.9 ms for cello-1 and cello-2, while it is 8.2 ms and 11.1
ms for umass-1 and umass-2, respectively.

To map the Cello99 traces to our configuration with 120
disks, we assumed that each disk in the traces is mapped to
a single RAID array. Thus, 24 disks in the traces are mapped
to 120 disks in 24 RAID arrays. The umass traces have no
disk information. To use these traces in our experiments, we
assumed that each application runs with a dedicated RAID
array. Similarly to the Cello99 traces, umass requests are then
mapped to RAID addresses.

We additionally created 9 synthetic workloads with differ-
ent characteristics, as summarized in Table II. In the table,
“exp(u)” stands for exponential distribution with mean u.
For example, exp(6) for arrival distribution represents an
exponential distribution with p=6ms. The exp(6) and exp(20)
arrival rates were characterized in Hibernator [7], and we
added one more arrival distribution with exp(50) to consider
an environment with a relative light load . It is observed in the
literature that Internet data access patterns are related to a Zipf
distribution with skewness a=1.0 [26]. In addition, the authors
in [27] observed more heavily skewed accesses with a=1.8.
We modeled synthetic traces based on those observations, in

S11 1M exp(6) uniform exp(20)
S12 1M exp(20) uniform exp(20)
S13 1M exp(50) uniform exp(20)
S21 M exp(6) Zipt(a=1.0) exp(20)
S22 1M exp(20) Zipf(a=1.0) exp(20)
S23 1M exp(50) Zipf(a=1.0) exp(20)
S31 I M exp(6) Zipf(a=1.8) exp(20)
S32 1M exp(20) Zipf(a=1.8) exp(20)
S33 1 M exp(50) Zipf(a=1.8) exp(20)

addition to uniform access distribution.

We evaluated 4 different systems: NPS is a base system for
comparison without energy management; FTH is a system em-
ploying a fixed idleness threshold based on the 2-competitive
algorithm; PARAID(k,[) is a PARAID configuration with a
total of [ disks with gear shifting down to k (thus, [ — k disks
can go standby); and FREP(n,m) is an FREP configuration
with a total of n nodes and m CS nodes in a partition. We set
up two PARAID systems (PARAID(5,3) and PARAID(5,2))
and multiple FREP systems with different configurations, but
mainly discuss the FREP(6,2) configuration. Thus, there are 4
partitions for 24 nodes for FREP(6,2) setting. By definition,
PARAID systems can spin down disks with up to 40%
(PARAID(5,3)) and 60% (PARAID(5,2)) of the total disks
spun down, while FREP(6,2) can spin down 67% disks at max.
We observed that PARAID(S,1), that allows spinning down of
up to 80% disks, is severely degraded in terms of response time
performance. For example, PARAID(5,1) increased average
response time by a factor of 5 as compared to NPS with
cello-1 trace. We thus excluded this configuration from our
experiments.

As discussed in Section IV, FREP maintains de Bruijn
graphs for gear-switch decisions. For the graphs, we used 5-
second time frame (i.e., Trr = 5s). Since we configure the
number of bits based on the break-even time (i.e., number
of bits = [Tgg/TrF|), the graph is configured with 11 bits,
since Tpr = H4s based on the power model (Figure 14). In
addition, we conservatively chose confidence=0.9 for down-
shift, and set consecutive miss counter /=2 for up-shift to
consider temporal performance degradation. We discuss the
effects of time frame size and confidence in Section V-E.

We first present experimental results under relaxed service
constraints to see the upper bound of energy benefits. After
then, we will show how well FREP performs energy manage-
ment satisfying the given service constraint.

B. Under relaxed service constraints

As discussed, FREP makes gear-shift decisions under
consideration of service constraints. Here, we consider re-
laxed constraints. To give a relaxed constraint, we reverse-
engineered NPS logs, then we set service constraints with
values greater than twice of the NPS percentile numbers. For



example, 99% response time in the NPS results with cello-1 is
1,485 ms, and we used a number greater than 2 x 1485 ms for
the 99% constraint for relaxation. Thus, FREP focuses more
on energy saving in this case.

Figure 15 compares those two metrics with the real traces.
Overall, FTH is fairly sensitive to workloads with respect
to energy saving, and it shows very poor response times
due to spin-up delay. PARAID and FREP consistently saved
energy for different workloads. However, PARAID shows
higher degree of variation in response time, while FREP shows
fairly stable results by adaptively shifting gears to the given
workload. Interestingly, we can see that FREP yields better
response time than NPS with the cello-2 trace. This can be
explained by an effect of request redirection. Bursty requests to
a single node can be smoothed by redirecting them to multiple
nodes when FREP is operating in energy saving mode.

Figure 16 shows the experimental results with a set of
synthetic workloads. With these traces, FTH could make 0%—
20% energy saving, but mean response time is very poor.
Although not shown in the figure, mean response time in the
worst case was 389 ms for S33, which is 100 times greater
than the NPS’s. The replication-based solutions (i.e., PARAID
and FREP) are consistent, yielding significant energy saving
with little performance loss.

C. Under tight service constraints

We next examine FREP with tight service constraints to see
performance guarantees. We assume the following three types
of constraints, based on our constraint model R(p) < 7.

e CI: (p =0.9) A (1 =90% NPS response time);

e C2: (p=0.95) A (T = 95% NPS response time);

e C3: (p=0.99) A (T = 99% NPS response time).

For comparison, we call relaxed constraint CO.

Figure 17 shows the experimental results under tight con-
straints. In the figure, P(n,m) = PARAID(n,m). We
can see that significant percentages of violations occurred
for PARAID in order to obtain energy benefits for all three
constraints. PARAID(5,2) shows heavy violations between
37%—-57%. Even in the case of PARAID(5,3), the violations
were over 20% for those real-world traces. FTH also shows
some degree of violations greater than the constraints but
smaller than PARAID. In contrast, FREP largely satisfies the
given constraints. With tight constraints, FREP operates energy
management more conservatively. Nonetheless, we can see that
FREP still achieves non-trivial energy savings. FREP yields
15%—-60% energy saving for the cello traces and 3%—15% for
the umass traces.

Figure 18 shows the results with the synthetic traces for
C3 constraints. FREP successfully maintains violation rates to
less than the 1% constraint. However, it yields energy saving
only with skewed traces (i.e., S31 and S32).

Summarizing, although energy benefits achieved by FREP
in this case may be reduced, it still provides strong perfor-
mance guarantees. We observed only a single case that slightly
exceeds the given constraint (5.4% for 5% requirement for
cello-1 C2) out of 21 experimental cases.

TABLE III
ENERGY SAVING RATES

FREP setting 4,1) 4,2) 6,1) (6,2) (6,3)
Theoretical max 75% 50% 83% 67% 50%
cello-1 68.4% | 45.6% | 75.9% | 60.8% | 45.6%
umass- 1 68.2% | 45.5% | 75.3% | 60.6% | 45.5%

D. Impact of partition configuration

We next discuss the impact of FREP configuration. In this
experiment, we configured 4 additional FREP settings with
different numbers of nodes and CS nodes for each partition:
FREP(4,1), FREP(4,2), FREP(6,1), and FREP(6,2). There may
be various other possible configurations, but this result may
be indicative for other configurations.

Figure 19 shows the experimental results with cello-1 under
different partition settings. We can see that FREP saves energy
from 40% to 76% compared to NPS. In terms of performance
penalty, which is the ratio of the mean response time to the
NPS’s, it is only 14% at the worst case. Interestingly, 2 out
of 5 cases showed negative penalty, which implies that FREP
showed better response time than NPS. It is the impact of
request redirection, as discussed in Section V-B.

Table IIT summarizes energy saving rates to NPS in various
FREP configurations. As shown in the table, FREP exploits
replications, saving energy over 90% of the theoretical limits.
Theoretical max is simply computed directly from the config-
uration setting. For example, theoretical max for FREP(4,1)
is 75%, since 3 out of 4 nodes can be in the standby mode
at max. The mean response times were less than 86.2 ms for
cello-1 and less than 3.5 ms for umass-1, while NPS showed
75.7 ms and 0.9 ms, respectively.

E. Impact of time frame size and confidence

We next examined the impact of time frame size and
confidence. The time frame size (1}y) determines the number
of bits in the de Bruijn graph (with Tpg), while confidence
(c) enables probabilistic decisions for down-shift on the graph.
Greater Ty requires less space complexity for graph repre-
sentation with smaller number of bits. As mentioned, we used
Tw = bs, and thus, the number of bits were 11. Additionally,
we set up a graph with Ty = 30s, thus with 3 bits, for the
graph. With those time frame sizes, we conducted experiments
along different confidence values from ¢ = 0.1 to ¢ = 0.9
incrementing by 0.1 (we used ¢ = 0.9 by default) under the
constraint 1 (i.e., C'1).

Figure 20 shows the results. The x-axis is confidence. The
left y-axis shows energy saving to NPS, and the right y-axis
shows the average response time in milliseconds. Overall, the
results agree with our expectation. We can see that small time
frame size yields greater energy saving, but worse response
time. In contrast, the greater time frame size makes more
conservative moves, thus yielding less energy saving but better
response time.

Confidence largely affects both settings. With respect to
response time, it becomes stable as ¢ > 0.8 for Ty = 5.
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In the case of Ty = 30, ¢ = 0.9 improves response time
dramatically. With less than that, there are no significant
differences. In another experiment with different constraints
with cello-1, we also observed that ¢ = 0.9 under Ty, = 30
yielded fairly good results. However, our intuition is that using
a greater number of bits could guarantee performance more
reliably.

FE Impact of the number of tickets

It is possible to configure MaxTicket (i.e., the maximum
number of tickets) to set the window size. Intuitively, any large
window size may be beneficial to construct more accurate
probabilities, but may not be helpful for frequently varying
workloads over time. With a small window size, in contrast, it
may be possible to have hasty decisions with a small number

Response Time Constraint Violations (synthetic)

10% T T T T
2 O PARAID(53)
8 [l PARAID(5.2)
K O FREP(62C0) |~~~ |
s B FREP(62,C3)
g
S el M B MWW i
g
8
(8}
g
E oo {M- AW AN W =
8
i
et (R (ERRl IEs NESRl DIEETH! | RS TEaty s
’ mlh
0%

S11 s12 S13 21 S22 S23 S31 S32 S33

(b) Percentage of response time constraint violation

Energy saving and performance guarantees (Synthetic traces)

Performance Penalty (cello-1)
50 T T T

QO
B0

D0

P I

I I I I I
FREP(4,1) FREP(4,2) FREP(6,1) FREP(6,2) FREP(6,3)

Performance Penalty (%)

(b) Performance penalty

Impact of FREP configurations with different number of CS and non-CS nodes (cello-1)

100% ‘ — 200
Energy saving ——
.. Response time ---x--- o
80% |- b
S ., {150 £
~ . [
2 60% £
>
3 1100 3
B 40% g
2 ®
w 1 50 c
20% - g
=
0% ‘ ‘ ‘ ‘ ‘ 0
720 2160 4320 8640 infinite
Number of tickets
Fig. 21. Impact of number of tickets (cello-1): Running with smaller number

of tickets results in more aggressive energy management. Note that the y-axis
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of observations, although it can better explain recent workload
characteristics.

Figure 21 shows the impact of MaxTicket with the cello-1
trace. In the x-axis, we varied the maximum number of tickets.
As in Figure 20, the left y-axis is energy saving, while the right
y-axis is the average response time. Overall, using a small
window achieves better energy saving but greater response
times, and vice versa. This indicates that using a small window
works more aggressively, whereas using a large one works
more conservatively for energy saving. Thus, MaxTicket can
be tailored based on system goals and expected degree of
workload variations.

G. Applicability of the gear-shift mechanism
We observed a high degree of violations for PARAID

under tight constraints. This is due to the fact that PARAID
refers only to disk utilization for its gear switching, and it



is questionable whether disk utilization is directly relevant
to current load. For example, it can be underestimated due
to a high rate of cache hits, and gear-shift decisions can be
inadequate in this case because there may be a large number
of outstanding requests in the input queue.

Our gear-shift mechanism is based on prediction by learning
from the past history for better adaptability to workloads, and
we have seen that it provides performance guarantees for given
constraints. We applied this mechanism to PARAID and called
it “PARAID*”. The gear-switching operations were exactly
the same as the FREP’s. Figure 22 shows the PARAID*
results with the cello-1 trace. For this experiment, we used
two PARAID configurations, (5,2) and (5,3), with the three
constraints (C/-C3). We can see that PARAID* provides
fairly good performance guarantees, as well as energy savings.
This suggests that our gear-shift technique is applicable to
other systems with a gradual energy management function for
energy benefits with performance guarantees.

VI. CONCLUSION

Energy proportionality is one of key metrics for future
datacenters for both energy conservation and performance
guarantees. In this work, we presented a technique called
FREP (Fractional Replication for Energy Proportionality),
for energy management that enhances energy proportionality
in large datacenters. FREP includes a replication strategy
and basic functions to enable flexible energy management.
Specifically, our method provides performance guarantees by
adaptively controlling the power states of a group of disks
based on observed and predicted workloads. Our extensive
experimental results with a broad set of traces showed that
our energy management technique can achieve energy saving
of over 90% of theoretical limits with little performance loss.
With tight service constraints, we showed that FREP satisfies
service constraints in diverse settings.

We plan to continue to work on our energy management
algorithms and incorporate them in existing and newly created
file systems. For example, Hadoop [28], a popular distributed
computing framework, provides replication based on recon-
figurable replication factor (without skewness). Our future
work will investigate how we can incorporate techniques
that guarantee energy proportionality while satisfying selected
replication factors.
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